THE ALGORITHM FOR THE GRAM-SCHMIDT PROCESS

Suppose that u_1, \dots, u_n is a basis for an *n*-dimensional inner product space V with inner product (\cdot, \cdot) . Then the expression for the Gram-Schmidt process produces an orthogonal basis $\{v_1, \dots, v_n\}$ for V as follows:

Step 1.
$$v_1 = u_1$$
.

Step 2.
$$v_2 = u_2 - \frac{(u_2, v_1)}{\|v_1\|^2} v_1$$
.

Step 3.
$$v_3 = u_3 - \frac{(u_3, v_1)}{\|v_1\|^2} v_1 - \frac{(u_3, v_2)}{\|v_2\|^2} v_2$$
.

If we want to further obtain an orthonormal basis $\{w_1, \dots, w_n\}$, we only need to normalize all v_i :

Step 4.
$$w_i = \frac{v_i}{\|v_i\|}$$
 for all $i = 1, \dots, n$.

Put $V_i = \text{span}\{v_1, \dots, v_i\}$. Then the Gram-Schmidt process can be simplified as follows:

Step 1.
$$v_1 = u_1$$
.

Step 2.
$$v_2 = u_2 - \text{proj}_{V_1} u_2$$
.

Step 3.
$$v_3 = u_3 - \text{proj}_{V_2} u_3$$
.

:

Here $\operatorname{proj}_{V_i} u$ is the orthogonal projection of the vector u onto the subspace V_i .